Showing posts with label Cognition. Show all posts
Showing posts with label Cognition. Show all posts

Monday, February 10, 2025

Form-substance discrimination, a new learning outcome

We have long assumed that clear writing signals clear thinking. Schools teach writing as if it were math - a rigorous exercise that develops logical thinking. Editors catch not just errors but muddled ideas. Or so the theory goes. Artificial intelligence shatters this comfortable assumption by churning out impeccably structured prose devoid of original thought.

Form-substance discrimination represents a higher-order cognitive skill, similar to what art historians develop when they learn to separate technical mastery from creative vision. Just as an art student must unlearn their initial attraction to photorealistic paintings, readers now must develop resistance to seductively clear prose. This requires a kind of cognitive inhibition - the ability to suppress immediate aesthetic pleasure for the sake of deeper analysis.

The skill builds on existing metacognitive abilities but requires their novel application. Readers already know how to identify main ideas, analyze arguments, and evaluate evidence. What is new is the need to perform these operations while actively discounting the surface appeal of the text. This resembles what wine tasters do when they evaluate wines blind, stripped of prestigious labels and beautiful bottles.

The development follows a predictable pattern. At first, readers struggle to overcome their ingrained respect for well-crafted prose. The initial challenge lies not in identifying weak ideas but in giving oneself permission to criticize a text that follows all the rules of good writing. This mirrors the development of critical thinking in general, where students must learn to question authority figures who appear competent and confident.

The second stage involves developing specific techniques for idea extraction. Readers learn to create idea maps independent of the text's structure, to count unique concepts rather than words, to identify circular arguments hidden behind elegant transitions. They begin to see how AI-generated text often creates an illusion of logical flow while merely restating the same point in different words.

The final stage brings automaticity. Experienced readers develop an immediate sense of a text's intellectual weight, just as experienced teachers can quickly gauge a student's understanding despite fluent recitation. This involves pattern recognition built through exposure to many examples of both substantive and hollow texts.

The educational implications are significant. Writing instruction must now explicitly separate craft from content. Students need exposure to both well-written texts with weak ideas and poorly written texts with strong ideas. They must practice identifying when sophisticated language masks conceptual poverty and when rough expression contains genuine insight.

This shift parallels broader changes in how we process information. In a world of information abundance, the key skill is no longer finding or producing well-formed content but discerning its value. Form-substance discrimination represents a specific case of this general challenge - learning to navigate a world where traditional quality signals no longer reliably indicate underlying worth.

The skill matters beyond academia. Business leaders reading AI-generated reports, citizens evaluating political arguments, professionals studying their field's literature - all need to separate rhetorical sophistication from intellectual contribution. As AI writing tools improve, this ability will become as fundamental as basic literacy.

We face a paradox: the better AI becomes at writing, the more important it becomes for humans to see through good writing. The very perfection of AI-generated prose creates a new kind of opacity that readers must learn to penetrate. Form-substance discrimination thus emerges not just as an academic skill but as a key component of modern critical thinking.



Tuesday, February 4, 2025

Augmented Problem Finding: The Next Frontier in AI Literacy

In my recent blog on task decomposition as a key AI skill, I highlighted how breaking down complex problems enables effective human-AI collaboration. Yet before we can decompose a task, we must identify which problems are worth pursuing - a skill that takes on new dimensions in the age of AI.

This ability to recognize solvable problems expands dramatically with AI tools at our disposal. Tasks once considered too time-consuming or complex suddenly become manageable. The cognitive offloading that AI enables does not just help us solve existing problems - it fundamentally reshapes our understanding of what constitutes a tractable challenge.

Consider how VisiCalc transformed financial planning in the early 1980s. Initially seen as a mere automation tool for accountants, it revolutionized business planning by enabling instant scenario analysis. Tasks that would have consumed days of manual recalculation became instantaneous, allowing professionals to explore multiple strategic options and ask "what if" questions they would not have contemplated before. Similarly, AI prompts us to reconsider which intellectual tasks we should undertake. Writing a comprehensive literature review might have once consumed months; with AI assistance, scholars can now contemplate more ambitious syntheses of knowledge.

This expanded problem space creates its own paradox. As more tasks become technically feasible, the challenge shifts to identifying which ones merit attention. The skill resembles what cognitive psychologists call "problem finding," but with an important twist. Traditional problem finding focuses on identifying gaps or needs. Augmented problem finding requires understanding both human and AI capabilities to recognize opportunities in this enlarged cognitive landscape.

The distinction becomes clear in professional settings. Experienced AI users develop an intuitive sense of which tasks to delegate and which to tackle themselves. They recognize when a seemingly straightforward request actually requires careful human oversight, or when an apparently complex task might yield to well-structured AI assistance. This judgment develops through experience but could be taught more systematically.

The implications extend beyond individual productivity. Organizations must now cultivate this capacity across their workforce. The competitive advantage increasingly lies not in having access to AI tools - these are becoming ubiquitous - but in identifying novel applications for them. This explains why some organizations extract more value from AI than others, despite using similar technologies.

Teaching augmented problem finding requires a different approach from traditional problem-solving instruction. Students need exposure to varied scenarios where AI capabilities interact with human judgment. They must learn to recognize patterns in successful AI applications while developing realistic expectations about AI limitations. Most importantly, they need practice in identifying opportunities that emerge from combining human and machine capabilities in novel ways.

The skill also has ethical dimensions. Not every task that can be automated should be. Augmented problem finding includes judging when human involvement adds necessary value, even at the cost of efficiency. It requires balancing the technical feasibility of AI solutions against broader organizational and societal impacts.

As AI capabilities evolve, this skill will become increasingly crucial. The future belongs not to those who can best use AI tools, but to those who can best identify opportunities for their application. This suggests a shift in how we think about AI literacy - from focusing on technical proficiency to developing sophisticated judgment about when and how to engage AI capabilities.

The automation paradox that Lisanne Bainbridge identified in her 1983 analysis of industrial systems points to an interesting future. As we become more adept at augmented problem finding, we discover new challenges that merit attention. This creates a virtuous cycle of innovation, where each advance in AI capability opens new frontiers for human creativity and judgment.

Perhaps most intriguingly, this skill might represent a distinctly human advantage in the age of AI. While machines excel at solving well-defined problems, the ability to identify worthy challenges remains a uniquely human capability. By developing our capacity for augmented problem finding, we ensure a meaningful role for human judgment in an increasingly automated world.



Saturday, February 1, 2025

Task Decomposition, a core AI skill

The effective use of artificial intelligence depends on our ability to structure problems in ways that align with both human and machine capabilities. While AI demonstrates remarkable computational abilities, its effectiveness relies on carefully structured input and systematic oversight. This suggests that our focus should shift toward understanding how to break down complex tasks into components that leverage the respective strengths of humans and machines.

Task decomposition - the practice of breaking larger problems into manageable parts - predates AI but takes on new significance in this context. Research in expertise studies shows that experienced problem-solvers often approach complex challenges by identifying distinct components and their relationships. This natural human tendency provides a framework for thinking about AI collaboration: we need to recognize which aspects of a task benefit from computational processing and which require human judgment.

The interaction between human users and AI systems appears to follow certain patterns. Those who use AI effectively tend to approach it as a collaborative tool rather than a complete solution. They typically work through multiple iterations: breaking down the problem, testing AI responses, evaluating results, and adjusting their approach. This mirrors established practices in other domains where experts regularly refine their solutions through systematic trial and error.

Consider the task of writing a research paper. Rather than requesting a complete document from AI, a more effective approach involves breaking down the process: developing an outline, gathering relevant sources, analyzing specific arguments, and integrating various perspectives. Similarly, in data analysis, success often comes from methodically defining questions, selecting appropriate datasets, using AI for initial pattern recognition, and applying human expertise to interpret the findings.

This collaborative approach serves two purposes. First, it helps manage complexity by distributing cognitive effort across human and machine resources. Second, it maintains human oversight of the process while benefiting from AI's computational capabilities. The goal is not to automate thinking but to enhance it through structured collaboration.

Current educational practices have not yet fully adapted to this reality. While many institutions offer technical training in AI or discuss its ethical implications, fewer focus on teaching systematic approaches to human-AI collaboration. Students need explicit instruction in how to break down complex tasks and document their decision-making processes when working with AI tools.

To address this gap, educational programs could incorporate several key elements:

  1. Practice in systematic task analysis and decomposition
  2. Training in structured approaches to AI interaction
  3. Documentation of decision-making processes in AI-assisted work
  4. Critical evaluation of AI outputs and limitations
  5. Integration of human expertise with AI capabilities

The emergence of AI tools prompts us to examine our own cognitive processes more explicitly. As we learn to structure problems for AI collaboration, we also develop a clearer understanding of our own problem-solving approaches. This suggests that learning to work effectively with AI involves not just technical skills but also enhanced metacognition - thinking about our own thinking.

The future of human-AI collaboration likely depends less on technological advancement and more on our ability to develop systematic approaches to task decomposition. By focusing on this fundamental skill, we can work toward more effective integration of human and machine capabilities while maintaining the critical role of human judgment and oversight.

These observations and suggestions should be treated as starting points for further investigation rather than definitive conclusions. As we gather more evidence about effective human-AI collaboration, our understanding of task decomposition and its role in this process will likely evolve. The key is to maintain a balanced approach that recognizes both the potential and limitations of AI while developing structured methods for its effective use. 




Wednesday, January 15, 2025

Is Critical Thinking Going Extinct? Maybe That's Not Bad

As someone who remembers using paper maps and phone books, I find myself fascinated by Michael Gerlich's new study in Societies about AI's impact on our cognitive skills. Those of us who learned to navigate by landmarks and memorized phone numbers often bemoan younger generations' reliance on digital tools. But perhaps we are missing something important about cognitive evolution.

Gerlich's research is methodologically elegant. Through surveys and interviews with 666 participants, he documents a decline in traditional critical thinking skills among frequent AI users. The data analysis is rigorous - multiple regression, ANOVA, random forest regression - showing clear correlations between AI tool usage and reduced traditional analytical thinking.

But here's where I think Gerlich misses a crucial insight. The study measures critical thinking through metrics developed for a pre-AI world. It's like judging modern urban survival skills by the standards of hunter-gatherer societies. Those ancient peoples could track game, identify countless plants, and navigate vast territories without maps. By their standards, most of us would be considered cognitively impaired.

What we're witnessing is not cognitive decline but cognitive adaptation. Today's "critical thinking" is not about solving problems independently - it's about effective human-AI collaboration. It's about knowing when to trust AI and when to question it, how to frame queries effectively, and how to combine AI insights with human judgment.

The educational implications are profound. Instead of lamenting the loss of traditional cognitive skills, we should focus on developing "AI-literate critical thinking." Sure, I can still read a map, but my children need to master skills I never dreamed of - like crafting effective prompts for AI systems or critically evaluating AI-generated content.

The old form of critical thinking might be fading, like the ability to start a fire by friction or navigate by stars. But a new form is emerging, better suited to our technological reality. Our task is not to resist this evolution but to guide it wisely.

What do you think? Are we really losing something irreplaceable, or are we just adapting to a new cognitive environment?




Monday, January 13, 2025

The Myth of AI Replacing Teachers: Why Human Connection Matters More Than Ever

Last week, a colleague asked me what I thought about AI replacing teachers. The question made me smile - not because it was silly, but because it revealed how deeply we misunderstand both artificial intelligence and teaching. As someone who has written much on the pedagogy of relation and now serves as chief AI officer, I see a different story unfolding.

The fear of AI replacing teachers rests on a peculiar assumption: that teaching is primarily about delivering information and grading papers. It is as if we imagine teachers as particularly inefficient computers, ready to be upgraded to faster models. This view would be amusing if it weren't so prevalent among teachers (and their labor unions) and tech enthusiasts alike.

Teaching, at its heart, is not about information transfer - it is about relationship building. Research in relational pedagogies has shown time and again that learning happens through and because of human connections. Think about how children learn their first language: not through formal instruction, but through countless small interactions, emotional connections, and social bonds. The same principle extends throughout the entire education.

When I first encountered ChatGPT, I was struck not by its ability to replace teachers, but by its potential to give them back what they need most: time for human connection. AI can handle the mundane tasks that currently consume teachers' energy - generating basic content, providing routine feedback, creating initial drafts of lesson plans. But it cannot replicate the raised eyebrow that tells a student their argument needs work, or the encouraging nod that builds confidence in a hesitant learner.

Yet many educators remain skeptical of AI, and perhaps they should be. Any tool powerful enough to help is also powerful enough to harm if misused. But the real risk isn't that AI will replace teachers - it is that we'll waste its potential by focusing on the wrong things. Instead of using AI to automate educational assembly lines, we could use it to create more space for real human connection in learning.

I have seen glimpses of this future in my own classroom. When AI can answer routine questions about my syllabus, and lots of basic questions about content of the course, I can spend more time in meaningful discussions with students. When it helps generate initial content, I can focus on crafting experiences that challenge and engage. The technology becomes invisible, while human relationships move to the foreground.

The coming years will transform education, but not in the way many fear. The teachers who thrive won't be those who resist AI, nor those who embrace it uncritically. They will be the ones who understand that technology works best when it strengthens, rather than replaces, human relationships.


Monday, January 6, 2025

Get Used to It: You Will Read AI Summaries, Too

No human can keep up with academic publishing. In philosophy alone - a relatively small field - scholars produce over 100 million words a year in 2500 journals in many languages. We already avoid reading complete texts. Speed reading, strategic reading, scanning - these are all ways of not reading while pretending we do. Few people read academic papers word by word. We look for key arguments, skip familiar ground, skim examples. These are coping mechanisms for an impossible task.

AI-generated summaries are the next logical step. Yes, they miss nuance. Yes, they may misinterpret complex arguments. But they are better than not reading at all, which is what happens to most papers in any field. An imperfect but targeted summary of a paper you would never open expands rather than limits your knowledge. 

Let us be honest about why we read scholarly literature. We search for evidence that confirms or challenges our hypotheses, for ideas that enrich our understanding of specific problems. Reading is not an end in itself; it serves our scholarly purposes. AI excels precisely at this kind of targeted knowledge extraction. It can track related concepts across disciplines even when authors use different terminology to describe similar phenomena. Soon, AI will detect subtle connections between ideas that human readers might miss entirely. 

The shift toward AI-assisted reading in academia is inevitable. Instead of pretending otherwise, we should teach students to know the limitations of AI summarization, to cross-check crucial points against source texts, to use summaries as maps for selective deep reading. Critics will say this threatens scholarship. But the real threat is the growing gap between available knowledge and our capacity to process it. AI-assisted reading could enable more thoughtful engagement by helping us identify which texts truly deserve careful study. This does not cancel the practice of close reading, but augments and enriches it. 


Saturday, January 4, 2025

The End of Writing as We Know It (And Why That is Fine)

The relationship between thought and writing has never been simple. While writing helps organize and preserve thought, the specific form writing takes varies across time and cultures. Yet educators and cultural critics display remarkable resistance to reimagining writing in the age of artificial intelligence.

The current discourse around AI and writing echoes historical anxieties about the decline of Latin instruction. In the 18th and 19th centuries, prominent intellectuals warned that abandoning Latin would lead to cultural and intellectual decay. They saw Latin as more than a language - it represented a particular way of thinking, a connection to tradition, and a mark of education. Jefferson praised Latin as essential for intellectual development. Arnold predicted cultural impoverishment without classical education. Newman saw classics as the bedrock of sound learning.

These predictions did not materialize. The decline of Latin did not prevent the emergence of rich intellectual traditions in vernacular languages. Modern universities produce sophisticated scholarship without requiring Latin fluency. The link between Latin and "disciplined intellect" proved imaginary.

Today's defenders of traditional writing make similar arguments. They present specific writing conventions - formal grammar, academic style, elaborate sentence structures - as essential to clear thinking. Yet these conventions reflect historical accidents rather than cognitive necessities. Most human thinking and communication happens through speech, which follows different patterns. The formal writing style emerged relatively recently as a specialized professional skill.

AI will likely transform writing practices just as the decline of Latin transformed education. Some traditional writing skills may become less relevant as AI handles routine composition tasks. But this does not threaten human thought or culture. New forms of expression will emerge, combining human creativity with AI capabilities. Rather than defending writing conventions, educators should explore how AI can enhance human communication and cognition.

The anxiety about AI and writing reveals our tendency to mistake familiar forms for essential structures. Just as medieval scholars could not imagine scholarship without Latin, many today cannot envision intellectual work without traditional writing. As A.E. Housman wrote in 1921: "When the study of Latin dies, the study of thought dies with it. For Latin has been the vehicle of the intellect for millennia, and its neglect spells intellectual mediocrity." This prediction proved spectacularly wrong. The dire warnings about AI's impact on writing will likely meet the same fate.

Writing serves thought, not the other way around. The specific techniques we use to record and share ideas matter less than the ideas themselves. Rather than trying to preserve current writing practices unchanged, we should embrace the opportunity to develop new forms of expression. The death of Latin did not kill thought. Neither will the transformation of writing through AI.

The real challenge is not protecting traditional writing but imagining new possibilities. How might AI help us communicate more effectively? What new genres and styles will emerge? What aspects of current writing practice truly serve human needs, and what parts simply reflect professional habits? These questions deserve more attention than defensive reactions against change.

The history of education shows that cherished practices often outlive their usefulness. Latin remained central to education long after it ceased being particularly valuable. Similarly, current writing conventions may persist more from institutional inertia than genuine necessity. AI offers an opportunity to reconsider what forms of expression best serve human thought and learning.



Saturday, December 7, 2024

The Curriculum Illusion: How AI Exposes Long-Standing Educational Flaws

Artificial intelligence is often blamed for disrupting education, but it has created few new problems. Instead, it exposes existing flaws, bringing them into stark relief. Among these is the arbitrary nature of curriculum design, an issue that has long been hidden behind tradition and consensus. The sequences and structures of formal education are not based on objective logic or evidence but on habit and convenience. AI did not cause this; it is simply making these issues more visible.

Curriculum theory has never provided a robust framework for sequencing knowledge. Beyond the essentials of literacy and numeracy, where developmental progression is more or less clear, the rationale for curricular order becomes murky. Why are algebra and geometry taught in a particular order? Why more algebra than statistics is taught? Why are some historical periods prioritized over others? The answers lie in tradition and precedent rather than in any coherent theoretical justification. The assumptions about foundational skills, so central to curriculum logic, do not extend well beyond the basics. For advanced skills like critical, creative, or discerning thinking, the idea of prerequisites becomes less justified. Mid-range procedural skills like writing mechanics or computational fluency are frequently used as gatekeepers, though their role in fostering higher-order thinking is often overstated or misunderstood. 

For example, in middle school students are often subjected to a torrent of tasks that serve little developmental purpose. Much of what students do in these years amounts to busywork, designed more to keep them occupied and compliant than to foster meaningful learning. The situation is no better in higher education. College and graduate programs are often constructed around professional or disciplinary standards that themselves are arbitrary, built on consensus rather than evidence. These norms dictate course sequences and learning objectives but rarely align with the actual developmental or professional needs of students. The result is a system full of redundancies and inefficiencies, where tasks and assignments exist more to justify the structure than to serve the learner.

Education as a profession bears much of the responsibility for this state of affairs. Despite its long history, it lacks a disciplined, founded approach to curriculum design. Instead, education relies on an uneasy mix of tradition, politics, and institutional priorities. Curriculum committees and accrediting bodies often default to consensus-driven decisions, perpetuating outdated practices rather than challenging them. The absence of a rigorous theoretical framework for curriculum design leaves the field vulnerable to inertia and inefficiency.

AI did not create this problem, but it is illuminating it in uncomfortable ways. The displacement of certain procedural mid-range skills shows how poorly structured many learning sequences are and how little coherence exists between tasks and their intended outcomes. Yet, while AI can diagnose these flaws, it cannot solve them. The recommendations it offers depend on the data and assumptions it is given. Without a strong theoretical foundation, AI risks exposing the problem without solving it.

What AI provides is an opportunity, not a solution. It forces educators and policymakers to confront the arbitrary nature of curriculum design and to rethink the assumptions that underpin it. Massive curricular revision is urgently needed, not only to eliminate inefficiencies but also to realign education with meaningful developmental goals. This will require abandoning tasks that lack purpose, shifting focus from intermediary to higher-order skills, designing learning experiences to reflect the shift. It will also mean questioning the professional and disciplinary standards that dominate higher education and asking whether they truly serve learners or simply perpetuate tradition.

AI is revealing what has long been true: education has been operating on shaky foundations. The challenge now is to use this visibility to build something better, to replace the old traditions and arbitrary standards with a system that is logical, evidence-based, and focused on learning. The flaws were always there. AI is just making them harder to ignore.



Thursday, October 10, 2024

Is the college essay dead?

The college essay, once a revered academic exercise, is now facing an existential crisis. It used to be a good tool—a structured way for students to demonstrate their understanding, showcase their critical thinking, and express ideas with clarity . The college essay was not merely about content; it was a skill-building process, teaching students to organize thoughts, develop arguments, and refine language. Yet today, AI  has made the traditional essay feel outdated, as it can generate polished, formulaic essays effortlessly. Policing AI use in these assignments is nearly impossible, and the conventional essay’s value is rapidly diminishing.

Not all essays are created equal, however, and the future of the college essay might depend on the type of skills we emphasize. The expository essay, designed to see if students understand material or can apply concepts, is on its last legs. When AI can churn out a satisfactory response in seconds, it is a clear sign that this form of assessment is no longer viable. The AI does not just pass these assignments; it excels at them, raising an uncomfortable question—if a machine can do it, why are we still teaching it? For these kinds of essays, the challenge is that they often assess recall rather than thinking. They were already on shaky ground; AI is just the final push. 

The essays that may survive, though, are those that demand novelty, creativity, and genuine problem-solving. AI may help in drafting, structuring, or even generating ideas, but it does not replace the kind of original thinking needed to solve real-world problems. It cannot fully simulate human intuition, lived experience, or deep critical evaluation. AI's writing is wooden, and often devoid of true beauty. Essays that require students to synthesize information in new ways, explore original ideas, exhibit artistic talent, or reflect deeply on personal experiences still have value. These essays are not about whether you know a theory; they are about what you can do with it. This is where the human element—the messy, unpredictable spark of creativity—remains irreplaceable. 

The deeper issue is not AI itself but the way we have been teaching and valuing writing. For decades, the emphasis has been on producing “correct” essays—structured, grammatically precise, and obedient to the format. We have been training students to write well enough to meet requirements, not to push the boundaries of their creativity. It is like teaching students to be proficient typists when what we really need are novelists or inventors. We have confused competency with originality, thinking that writing formulaic content is a necessary step before producing meaningful work. This is a misunderstanding of how creativity works; mastery does not come from repetition of the mundane but from risk-taking and exploration, even if that means stumbling along the way.

The real future of the essay should start with this recognition. Imagine if instead of book reports or basic expository pieces, students were challenged to write for real audiences—to draft scientific papers for journals, craft poems for literary contests, or propose solutions to pressing social issues. Sure, many students would not reach the publication stage, but the act of aiming higher would teach them infinitely more about the writing process, and more importantly, about thinking itself. This would not just be about mastering the mechanics of writing but developing a mindset of curiosity and originality. AI could still play a role in these processes, helping with the technicalities, leaving the student free to focus on developing and articulating novel ideas.   

The problem with the book report or the “explain Theory A” essay is not just that they are boring; it is that they are irrelevant. Nobody in the professional world is paid to summarize books or explain theories in isolation. These are stepping stones that lead nowhere. Excelling at pointless, terrible genre does not prepare to succeed ad an authentic genre. Instead of teaching students to write these antiquated forms, we should ask them to write pieces that demand something more—something they cannot copy-paste or generate easily with a prompt. Authentic, context-rich, and creative assignments are the ones that will endure. If there is no expectation of novelty or problem-solving, the essay format becomes an exercise in futility. 

AI’s rise does not have to spell the end of the essay. It might, in fact, be the nudge needed to reinvent it. We have the chance to move beyond teaching “correct” writing toward cultivating insightful, original work that challenges the boundaries of what students can do. AI’s presence forces us to ask hard questions about what we want students to learn. If writing is no longer about mechanics or regurgitating content but about generating ideas and engaging critically, then AI becomes a collaborator, not a competitor. It can help with the structure, but the essence—the thinking—must come from the student.

In the end, the college essay is not dead; it is just in need of reinvention. The conventional model of essays as rote demonstrations of knowledge is no longer viable. But the essay that challenges students to think, create, and solve problems—those essays will survive. They might even thrive, as the focus shifts from the mechanics of writing to the art of thinking. The key is to evolve our teaching methods and expectations, making room for a new kind of writing that leverages AI without losing the human touch. Raising expectations is the main strategy in dealing with AI in education. 



Sunday, September 29, 2024

Advanced AI users develop special cognitive models

When we encounter a stranger, we make swift, often unconscious judgments about who they are and what they are capable of. A person who speaks our language with barely a hint of an accent? We assume they are fluent. Someone who drops a reference to a complex scientific theory? We peg them as well-educated, likely to be literate, and probably knowledgeable about a range of topics from current events to social norms.

These snap judgments form the backbone of our social interactions. They are mental shortcuts, honed over millennia of human evolution, allowing us to navigate the complexities of social life with remarkable efficiency. Most of the time, they serve us well. We can usually guess whether someone will understand a joke, follow a complex argument, or need help using a smartphone. These are cognitive models. 

But when we step into the realm of artificial intelligence, these time-tested models crumble. Our human-centric predictions fail spectacularly, leaving us confused and often frustrated. Consider a recent incident with ChatGPT, a sophisticated language model. When asked to count the number of 'r's in the word "strawberry," it faltered. Many observers scoffed, concluding that AI must be fundamentally stupid if it couldn't handle such a simple task.

Yet this reaction reveals more about our flawed expectations than any shortcoming of AI. Those familiar with AI's inner workings were not surprised. They understand that a language model, no matter how advanced, is not optimized for character-level analysis. It is like expecting a master chef to be an expert accountant simply because both professions involve numbers.

This misalignment between our expectations and AI's actual capabilities stems from our tendency to anthropomorphize. We instinctively attribute human-like qualities to these digital entities. We expect them to have consistent opinions, to learn from our interactions, to understand context and nuance as we do. But AI, in its current form, does none of these things.

Unlike humans, AI does not carry the baggage of personal experience or emotion. It does not have good days or bad days. It will not be flattered by praise or offended by insults. It can switch from discussing quantum physics to writing poetry without missing a beat, unencumbered by the specialization that defines human expertise.

But AI's differences extend beyond mere capability. It lacks the fundamental attributes we associate with consciousness. It has no self-awareness, no goals or motivations of its own. It does not truly understand the content it generates, despite how convincing it may seem. It is a reflection of the data it was trained on, not a sentient being forming its own thoughts and opinions.

To interact effectively with AI, we need to develop new mental models. We must learn to predict its behavior not based on human analogies, but on an understanding of its unique nature. This means recognizing that AI might struggle with tasks we find trivially easy, while effortlessly accomplishing feats that would challenge even the most brilliant human minds.

It means understanding that every interaction with AI is essentially new. Unlike humans, who build on past conversations and experiences, most current AI systems do not retain information from one chat to the next. They do not learn or evolve through our interactions. Each query is processed afresh, without the context of what came before.

This new model of understanding also requires us to be more precise in our interactions with AI. While humans often fill in gaps in conversation with assumed context, AI interprets our requests literally. It does not automatically infer our unstated needs or desires. The clarity of our input directly influences the quality of the AI's output.

As AI becomes an increasingly integral part of our lives, developing these new mental models is not just about avoiding frustration. It is about unlocking the full potential of these powerful tools. By understanding AI's strengths and limitations, we can craft our interactions to leverage its capabilities more effectively.

The future of human-AI interaction lies not in expecting AI to conform to human patterns, but in adapting our approach to align with AI's unique characteristics. It is a future that requires us to be more thoughtful, more precise, and more open to rethinking our instinctive assumptions. In doing so, we may not only improve our interactions with AI but also gain new insights into the nature of intelligence itself. 



Monday, September 23, 2024

Cognitive Offloading: Learning more by doing less

In the AI-rich environment, educators and learners alike are grappling with a seeming paradox: how can we enhance cognitive growth by doing less? The answer lies in the concept of cognitive offloading, a phenomenon that is gaining increasing attention in cognitive science and educational circles.

Cognitive offloading, as defined by Risko and Gilbert (2016) in their seminal paper "Cognitive Offloading," is "the use of physical action to alter the information processing requirements of a task so as to reduce cognitive demand." In other words, it is about leveraging external tools and resources to ease the mental burden of cognitive tasks.

Some educators mistakenly believe that any cognitive effort is beneficial for growth and development. However, this perspective overlooks the crucial role of cognitive offloading in effective learning. As Risko and Gilbert point out, "Offloading cognition helps us to overcome such capacity limitations, minimize computational effort, and achieve cognitive feats that would not otherwise be possible."

The ability to effectively offload cognitive tasks has always been important for human cognition. Throughout history, we've developed tools and strategies to extend our mental capabilities, from simple note-taking to complex computational devices. However, the advent of AI has made this skill more crucial than ever before.

With AI, we are not just offloading simple calculations or memory tasks; we are potentially shifting complex analytical and creative processes to these powerful tools. This new landscape requires a sophisticated understanding of AI capabilities and limitations. More importantly, it demands the ability to strategically split tasks into elements that can be offloaded to AI and those that require human cognition.

This skill - the ability to effectively partition cognitive tasks between human and AI - is becoming a key challenge for contemporary pedagogy. It is not just about using AI as a tool, but about understanding how to integrate AI into our cognitive processes in a way that enhances rather than replaces human thinking.

As Risko and Gilbert note, "the propensity to offload cognition is influenced by the internal cognitive demands that would otherwise be necessary." In the context of AI, this means learners need to develop a nuanced understanding of when AI can reduce cognitive load in beneficial ways, and when human cognition is irreplaceable.

For educators, this presents both a challenge and an opportunity. The challenge lies in teaching students not just how to use AI tools, but how to think about using them. This involves developing metacognitive skills that allow students to analyze tasks, assess AI capabilities, and make strategic decisions about cognitive offloading.

The opportunity, however, is immense. By embracing cognitive offloading and teaching students how to effectively leverage AI, we can potentially unlock new levels of human cognitive performance. We are not just making learning easier; we are expanding the boundaries of what is learnable.

It is crucial to recognize the value of cognitive offloading and develop sophisticated strategies for its use. The paradox of doing less to learn more is not just a quirk of our technological age; it is a key to unlocking human potential in a world of ever-increasing complexity. The true measure of intelligence in the AI era may well be the ability to know when to think for ourselves, and when to let AI do the thinking for us. 

The AI Recruiter Will See You Now

The tidy world of job applications, carefully curated CVs and anxious cover letters may soon become a relic. Every professional now leaves d...