The recent video of Elon Musk promising AI teachers reveals a common misunderstanding among technology leaders. They see education primarily as information transfer and skills training, where an infinitely patient AI system delivers perfectly tailored content to each student. This viewpoint ignores the fundamental nature of education as a relational institution.
Since Gutenberg's invention of the printing press, motivated individuals could teach themselves almost anything. Libraries contain more knowledge than any single teacher. Yet most people do not turn into autodidacts. Why is that? The question is not how to make knowledge more accessible, but why people choose to engage with it.
Teachers generate reasons to learn through two main approaches. In more constructivist settings, they inspire curiosity and create engaging problems to solve. In mor traditional schools, they maintain authority and discipline. In most schools, there is a mixture of both. Both methods work because they establish a social framework for learning. A good teacher knows when to push and when to comfort, when to explain and when to let students struggle.
The comparison of AI to Einstein as a teacher misses the point. Teaching requires different qualities than scientific genius - the capacity to enter a relationship, to create meaningful connections, and to help students discover their own reasons for learning. An AI system, no matter how knowledgeable, cannot do any of that.
Students often study not because they find the subject inherently fascinating, but because they respect their teacher, want to belong to a learning community, or seek to fulfill social expectations. Even negative motivations like fear of disappointing others have a distinctly human character.
The techno-utopian vision reduces learning to information exchanges and skill assessments. This mechanistic view fails to account for the social and emotional dimensions of human development. While AI can enhance teaching by handling routine tasks, it cannot replace the essential human relationships that drive educational engagement. The future of education lies not in perfecting content delivery algorithms, but in strengthening the relational foundations of learning.
Such overblown promises about AI in education do more harm than good. They create unnecessary anxiety among teachers and administrators, leading to resistance against even modest technological improvements. Instead of addressing real challenges in education - student engagement, equitable access, and meaningful assessment - institutions get distracted by unrealistic visions of AI-driven transformation. We need a more balanced approach that recognizes both the potential and limitations of AI in supporting, not replacing, the fundamentally human enterprise of education.