Tuesday, February 4, 2025

Augmented Problem Finding: The Next Frontier in AI Literacy

In my recent blog on task decomposition as a key AI skill, I highlighted how breaking down complex problems enables effective human-AI collaboration. Yet before we can decompose a task, we must identify which problems are worth pursuing - a skill that takes on new dimensions in the age of AI.

This ability to recognize solvable problems expands dramatically with AI tools at our disposal. Tasks once considered too time-consuming or complex suddenly become manageable. The cognitive offloading that AI enables does not just help us solve existing problems - it fundamentally reshapes our understanding of what constitutes a tractable challenge.

Consider how VisiCalc transformed financial planning in the early 1980s. Initially seen as a mere automation tool for accountants, it revolutionized business planning by enabling instant scenario analysis. Tasks that would have consumed days of manual recalculation became instantaneous, allowing professionals to explore multiple strategic options and ask "what if" questions they would not have contemplated before. Similarly, AI prompts us to reconsider which intellectual tasks we should undertake. Writing a comprehensive literature review might have once consumed months; with AI assistance, scholars can now contemplate more ambitious syntheses of knowledge.

This expanded problem space creates its own paradox. As more tasks become technically feasible, the challenge shifts to identifying which ones merit attention. The skill resembles what cognitive psychologists call "problem finding," but with an important twist. Traditional problem finding focuses on identifying gaps or needs. Augmented problem finding requires understanding both human and AI capabilities to recognize opportunities in this enlarged cognitive landscape.

The distinction becomes clear in professional settings. Experienced AI users develop an intuitive sense of which tasks to delegate and which to tackle themselves. They recognize when a seemingly straightforward request actually requires careful human oversight, or when an apparently complex task might yield to well-structured AI assistance. This judgment develops through experience but could be taught more systematically.

The implications extend beyond individual productivity. Organizations must now cultivate this capacity across their workforce. The competitive advantage increasingly lies not in having access to AI tools - these are becoming ubiquitous - but in identifying novel applications for them. This explains why some organizations extract more value from AI than others, despite using similar technologies.

Teaching augmented problem finding requires a different approach from traditional problem-solving instruction. Students need exposure to varied scenarios where AI capabilities interact with human judgment. They must learn to recognize patterns in successful AI applications while developing realistic expectations about AI limitations. Most importantly, they need practice in identifying opportunities that emerge from combining human and machine capabilities in novel ways.

The skill also has ethical dimensions. Not every task that can be automated should be. Augmented problem finding includes judging when human involvement adds necessary value, even at the cost of efficiency. It requires balancing the technical feasibility of AI solutions against broader organizational and societal impacts.

As AI capabilities evolve, this skill will become increasingly crucial. The future belongs not to those who can best use AI tools, but to those who can best identify opportunities for their application. This suggests a shift in how we think about AI literacy - from focusing on technical proficiency to developing sophisticated judgment about when and how to engage AI capabilities.

The automation paradox that Lisanne Bainbridge identified in her 1983 analysis of industrial systems points to an interesting future. As we become more adept at augmented problem finding, we discover new challenges that merit attention. This creates a virtuous cycle of innovation, where each advance in AI capability opens new frontiers for human creativity and judgment.

Perhaps most intriguingly, this skill might represent a distinctly human advantage in the age of AI. While machines excel at solving well-defined problems, the ability to identify worthy challenges remains a uniquely human capability. By developing our capacity for augmented problem finding, we ensure a meaningful role for human judgment in an increasingly automated world.



Saturday, February 1, 2025

Task Decomposition, a core AI skill

The effective use of artificial intelligence depends on our ability to structure problems in ways that align with both human and machine capabilities. While AI demonstrates remarkable computational abilities, its effectiveness relies on carefully structured input and systematic oversight. This suggests that our focus should shift toward understanding how to break down complex tasks into components that leverage the respective strengths of humans and machines.

Task decomposition - the practice of breaking larger problems into manageable parts - predates AI but takes on new significance in this context. Research in expertise studies shows that experienced problem-solvers often approach complex challenges by identifying distinct components and their relationships. This natural human tendency provides a framework for thinking about AI collaboration: we need to recognize which aspects of a task benefit from computational processing and which require human judgment.

The interaction between human users and AI systems appears to follow certain patterns. Those who use AI effectively tend to approach it as a collaborative tool rather than a complete solution. They typically work through multiple iterations: breaking down the problem, testing AI responses, evaluating results, and adjusting their approach. This mirrors established practices in other domains where experts regularly refine their solutions through systematic trial and error.

Consider the task of writing a research paper. Rather than requesting a complete document from AI, a more effective approach involves breaking down the process: developing an outline, gathering relevant sources, analyzing specific arguments, and integrating various perspectives. Similarly, in data analysis, success often comes from methodically defining questions, selecting appropriate datasets, using AI for initial pattern recognition, and applying human expertise to interpret the findings.

This collaborative approach serves two purposes. First, it helps manage complexity by distributing cognitive effort across human and machine resources. Second, it maintains human oversight of the process while benefiting from AI's computational capabilities. The goal is not to automate thinking but to enhance it through structured collaboration.

Current educational practices have not yet fully adapted to this reality. While many institutions offer technical training in AI or discuss its ethical implications, fewer focus on teaching systematic approaches to human-AI collaboration. Students need explicit instruction in how to break down complex tasks and document their decision-making processes when working with AI tools.

To address this gap, educational programs could incorporate several key elements:

  1. Practice in systematic task analysis and decomposition
  2. Training in structured approaches to AI interaction
  3. Documentation of decision-making processes in AI-assisted work
  4. Critical evaluation of AI outputs and limitations
  5. Integration of human expertise with AI capabilities

The emergence of AI tools prompts us to examine our own cognitive processes more explicitly. As we learn to structure problems for AI collaboration, we also develop a clearer understanding of our own problem-solving approaches. This suggests that learning to work effectively with AI involves not just technical skills but also enhanced metacognition - thinking about our own thinking.

The future of human-AI collaboration likely depends less on technological advancement and more on our ability to develop systematic approaches to task decomposition. By focusing on this fundamental skill, we can work toward more effective integration of human and machine capabilities while maintaining the critical role of human judgment and oversight.

These observations and suggestions should be treated as starting points for further investigation rather than definitive conclusions. As we gather more evidence about effective human-AI collaboration, our understanding of task decomposition and its role in this process will likely evolve. The key is to maintain a balanced approach that recognizes both the potential and limitations of AI while developing structured methods for its effective use. 




Augmented Problem Finding: The Next Frontier in AI Literacy

In my recent blog on task decomposition as a key AI skill , I highlighted how breaking down complex problems enables effective human-AI coll...