Saturday, September 14, 2024

Navigating the AI Gold Rush: Skins, Security, and the Real Value Proposition

 The economic battle surrounding artificial intelligence is intensifying at an unprecedented pace. Major AI players like OpenAI, Google, Meta, and Anthropic are leading this technological revolution. Tech giants such as Microsoft, Amazon, and Apple, along with thousands of startups, are vying for a stake in this burgeoning market without being able to develop their own competitive models. Amidst this frenzy, a critical question arises: what exactly is being sold?

Two primary value propositions have emerged in this landscape: skins and security mongers. Skins are interfaces or applications that overlay major AI models, aiming to simplify user interaction. They cater to individuals lacking advanced prompting skills, offering a more user-friendly experience. Security mongers, on the other hand, emphasize heightened privacy and security, often exaggerating potential risks to entice users.

While both propositions seem valuable on the surface, a deeper examination reveals significant shortcomings. Skins promise to streamline interactions with AI models by providing preset prompts or simplified interfaces. For instance, a startup might offer a chatbot specialized in drafting business emails, claiming it saves users the hassle of formulating prompts themselves. However, is this convenience truly worth it?

Major AI models are increasingly user-friendly. ChatGPT, for example, has an intuitive interface that caters to both novices and experts. Users often find they can achieve the same or better results without intermediary platforms. Additionally, skins often come with subscription fees or hidden costs, meaning users are essentially paying extra for a service the primary AI model already provides. There is also the issue of limited functionality; skins may restrict access to the full capabilities of the AI model, offering a narrow set of functions that might not meet all user needs.

The second proposition taps into growing concerns over data privacy and security. Vendors claim to offer AI solutions with superior security measures, assuring users their data is safer compared to using mainstream models directly. But does this claim hold up under scrutiny?

Most of these intermediaries still rely on API connections to major AI models like ChatGPT. Your data passes through their servers before reaching the AI model, effectively adding another point of vulnerability. Introducing additional servers and transactions inherently increases the risk of data breaches. More touchpoints mean more opportunities for data to be intercepted or mishandled. Furthermore, major AI providers invest heavily in security and compliance, adhering to stringent international standards. Smaller vendors may lack the resources to match these safeguards.

For example, a startup might advertise an AI-powered financial advisor with enhanced security features. However, if they are routing data through their servers to access a model like GPT-4, your sensitive financial data is exposed to additional risk without any tangible security benefit. The promise of enhanced security becomes questionable when the underlying infrastructure depends on the same major models.

AI platforms have not introduced new risks to privacy or security beyond what exists with other online services like banks or credit bureaus. They employ advanced encryption and security protocols to protect user data. While no system is infallible, major AI models are on par with, if not superior to, other industries in terms of security measures. They use end-to-end encryption to protect data in transit and at rest, implement strict authentication measures to prevent unauthorized access, and conduct regular security assessments to identify and mitigate vulnerabilities. It is easy to opt out of providing your data to train new models. It is much more difficult to know what your vendors are going to do with your data.

In a market flooded with AI offerings, it is crucial to approach vendors' claims with a healthy dose of skepticism. Validate the functionality by testing whether the convenience offered by skins genuinely enhances your experience or merely repackages what is already available. Assess the security measures by inquiring about the specific protocols in place and how they differ from those used by major AI providers. Transparency is key; reputable vendors should be open about how your data is used, stored, and protected.

As the AI gold rush continues, distinguishing between genuine innovation and superficial value propositions becomes essential. Skins and security mongers may offer appealing pitches, but often they add little to no value while potentially increasing costs and risks. It is wise to try using major AI models directly before opting for third-party solutions. Research the backgrounds of vendors to determine their credibility and reliability. Seek reviews and testimonials from other users to gauge the actual benefits and drawbacks.

In the end, the most powerful tool at your disposal is due diligence. By critically evaluating what is being sold, you can make informed decisions that truly benefit you in the rapidly evolving world of AI. Beware of vendors selling either convenience or security without substantial evidence of their value. At the very least, take the time to validate their claims before making an investment.

 


Thursday, September 12, 2024

The Stealth AI Adoption

In modern workplaces, a quiet trend is taking hold: employees are secretly adopting artificial intelligence tools to enhance their work. Whether it is writing, designing, coding, or creating content, many are leveraging AI without informing their bosses. This “stealth AI adoption” is likely more widespread than managers realize.

Consider Alex, a software developer at a bustling tech firm. To streamline his coding process, Alex uses an AI assistant that can generate snippets of code in seconds. This tool not only saves him hours each week but also allows him to tackle more complex projects. However, Alex keeps this AI helper under wraps. Why? He has two choices: use the extra time for personal activities or take on additional work to appear more productive than his peers. There is no actual incentive to admit the use of AI. In some shops, cybersecurity people will come after you, if you confess. 

This hidden use of AI offers clear benefits for employees. Saving a few hours each week is tempting, whether for personal pursuits or to discreetly boost one’s workload. As a result, many organizations might be underestimating how extensively AI is being integrated into daily tasks.

Productivity can be measured in two ways: doing the same work with fewer people or doing more with the same number. The latter is a healthier, more sustainable approach. To achieve true success, organizations should aim to do more with their existing workforce rather than cutting staff. However, the stealth adoption of AI complicates this goal.

When employees use AI tools without disclosure, organizations miss out on opportunities to harness these technologies strategically. Without knowing how AI is being utilized, companies can not provide proper training or integrate AI into their workflows effectively. This fragmented approach can lead to missed efficiency gains and a lack of cohesive progress.

To foster a productive and innovative environment, companies need to build trust with their employees. Here is how:

  1. Reassure Employees: Let your team know that adopting AI will not lead to layoffs. Emphasize that AI is a tool to help them do their jobs better, not a replacement for their roles. In unionized environments, a conversation with labor leaders would be wise. 

  2. Create Incentives for Disclosure: Encourage employees to share the AI tools they are using by offering rewards or recognition. This transparency can help management understand how AI is being integrated and identify best practices.

  3. Do More with the Same People: Focus on expanding the scope of work and fostering innovation rather than cutting positions. This approach not only boosts morale but also drives the organization forward.

By building trust and creating a supportive environment, organizations can turn stealth AI adoption into a strategic advantage. Employees will feel comfortable sharing their AI discoveries, allowing organizations to implement these tools effectively and sustainably.

As we move further into the AI-driven era, organizations must address this hidden trend. Encouraging transparency about AI tools and developing clear strategies for their use can ensure that productivity gains are real and sustainable. Until then, the silent spread of AI will keep reshaping workplaces, one undisclosed tool at a time. 



Saturday, September 7, 2024

AI in Education Research: Are We Asking the Right Questions?

A recent preprint titled "Generative AI Can Harm Learning" has attracted significant attention in education and technology circles. The study, conducted by researchers from the University of Pennsylvania, examines the impact of GPT-4 based AI tutors on high school students' math performance. While the research is well-designed and executed, its premise and conclusions deserve closer scrutiny.

The study finds that students who had access to a standard GPT-4 interface (GPT Base) performed significantly better on practice problems, but when that access was removed, they actually performed worse on exams compared to students who never had AI assistance. Interestingly, students who used a specially designed AI tutor with learning safeguards (GPT Tutor) performed similarly to the control group on exams. While these results are intriguing, we need to take a step back and consider the broader implications.

The researchers should be commended for tackling an important topic. As AI becomes more prevalent in education, understanding its effects on learning is crucial. The study's methodology appears sound, with a good sample size and appropriate controls. However, the conclusions drawn from the results may be somewhat misleading.

Consider an analogy: Imagine a study that taught one group of students to use calculators for arithmetic, while another group learned traditional pencil-and-paper methods. If you then tested both groups without calculators, of course the calculator-trained group would likely perform worse. But does this mean calculators "harm learning"? Or does it simply mean we are testing the wrong skills?

The real question we should be asking is: Are we preparing students for a world without AI assistance, or a world where AI is ubiquitous? Just as we do not expect most adults to perform complex calculations without digital aids, we may need to reconsider what math skills are truly essential in an AI-augmented world.

The study's focus on performance in traditional, unassisted exams may be missing the point. What would be far more interesting is an examination of how AI tutoring affects higher-level math reasoning, problem-solving strategies, or conceptual understanding. These skills are likely to remain relevant even in a world where AI can handle routine calculations and problem-solving.

Moreover, the study's title, "Generative AI Can Harm Learning," may be overstating the case. What the study really shows is that reliance on standard AI interfaces without developing underlying skills can lead to poor performance when that AI is unavailable. However, it also demonstrates that carefully designed AI tutoring systems can potentially mitigate these negative effects. This nuanced finding highlights the importance of thoughtful AI integration in educational settings.

While this study provides valuable data and raises important questions, we should be cautious about interpreting its results too broadly. Instead of seeing AI as a potential harm to learning, we might instead ask how we can best integrate AI tools into education to enhance deeper understanding and problem-solving skills. The goal should be to prepare students for a future where AI is a ubiquitous tool, not to protect them from it.

As we continue to explore the intersection of AI and education, studies like this one are crucial. However, we must ensure that our research questions and methodologies evolve along with the technology landscape. Only then can we truly understand how to harness AI's potential to enhance, rather than hinder, learning.


Thursday, August 29, 2024

Why Newsom should veto SB 1047

The Safe and Secure Innovation for Frontier Artificial Intelligence Models Act (SB 1047) might appear as a forward-thinking approach to regulating AI, but it overlooks a crucial reality: we lack the infrastructure to implement its provisions effectively. While some companies will inevitably claim they can audit AI systems and evaluate safety protocols, their motivations will often be driven by profit rather than genuine expertise.

Moreover, the burdens imposed by this bill will disproportionately affect smaller developers, particularly those on college campuses or within startups, who simply cannot afford the additional costs. This will stifle innovation, further entrenching the dominance of large tech companies and discouraging new entrants from participating in the AI landscape.

Before implementing such heavy-handed regulations, California must first focus on developing clear standards and building the capacity to enforce them. Without this groundwork, the bill will do more harm than good, leading to increased monopolization and a chilling effect on the very innovation it seeks to protect. The Governor should veto this bill and advocate for a more measured, phased approach that prioritizes the development of standards and capacity before regulation.

Friday, August 23, 2024

Filling Voids, Not Replacing Human Experts

The debate over artificial intelligence replacing human experts often centers on a binary question: Can AI do a better job than a human? This framing is understandable but overly simplistic. The reality is that in many contexts, the competition is not between AI and people—it is between AI and nothing at all. When viewed through this lens, the value of AI becomes clearer. It is not about pitting machines against human expertise; it is about addressing the voids left by a lack of available service.

Consider healthcare, particularly in underserved areas. It is a truism that a qualified doctor’s advice is better than anything an AI could provide. But what if you live in a rural village where the nearest doctor is hundreds of miles away? Or in a developing country where medical professionals are stretched thin? Suddenly, the prospect of AI-driven medical advice does not seem like a compromise; it feels like a lifeline. While AI lacks the nuanced judgment of an experienced physician, it can provide basic diagnostics, suggest treatments, or alert patients to symptoms that warrant urgent attention. In such scenarios, AI does not replace a doctor—it replaces the silence of inaccessibility with something, however imperfect.

Another case in point is mental health counseling. In many parts of the world, even in affluent countries, mental health services are woefully inadequate. Students at universities often face wait times ranging from weeks to months just to speak with a counselor. During that limbo, the option to interact with an AI, even one with obvious limitations, can be a critical stopgap. It is not about AI outperforming a trained therapist but offering a form of support when no other is available. It can provide coping strategies, lend a sympathetic ear, or guide someone to emergency services. Here, AI does not replace therapy; it provides something valuable in the absence of timely human support.

Education offers another case for AI’s gap-filling potential. Tutoring is an essential resource, but access to quality tutors is often limited, mainly because it is expensive. Universities might offer tutoring services, but they are frequently understaffed or employ peer tutors. Office hours with professors or teaching assistants can be similarly constrained. AI can step into this void. Chatting with an AI about a difficult concept or problem set might not equal the depth of understanding gained from a one-on-one session with a human tutor, but it is unquestionably better than struggling alone. AI does not compete with tutors; it extends their reach into spaces they cannot physically or temporally cover.

The same logic applies to a range of other fields. Legal advice, financial planning, career coaching—all are areas where AI has the potential to add significant value, not by outstripping human expertise but by offering something in environments where professional advice is out of reach. Imagine a low-income individual navigating legal complexities without the means to hire an attorney. An AI could provide at least basic guidance, clarify legal jargon, and suggest possible actions. All of it must be done with proper disclaimers. It is not a substitute for legal representation, but it is a world better than the alternative: no help at all.

In embracing this non-competing stance, we shift the narrative. The role of AI is not to replace human experts but to step in where human services are scarce or nonexistent. The true potential of AI lies in its ability to democratize access to essential services that many people currently go without. When AI is viewed as a bridge rather than a rival, its utility becomes much more evident. AI does not have to be better than a person to be valuable; it just should be better than the void it fills.



Monday, August 19, 2024

The Right to Leapfrog: Redefining Educational Equity in the Age of AI

AI’s potential in education is clear, particularly in how it can assist students who struggle with traditional learning methods. It is broadly accepted that AI can help bridge gaps in cognitive skills, whether due to dyslexia, ADHD, or other neurodiverse conditions. Yet, the utility of AI should not be confined to specific diagnoses. Insights from decades of implementing the Response to Intervention (RTI) framework reveal that regardless of the underlying cause—be it neurodiversity, trauma, or socioeconomic factors—the type of support needed by struggling students remains remarkably consistent. If AI can aid students with reading difficulties, why not extend its benefits to others facing different but equally challenging obstacles? Equity demands that AI’s advantages be made accessible to all who need them, regardless of the origin of their challenges.

This brings us to a deeper issue: the rigid and often unjust link between procedural and conceptual knowledge. Traditionally, lower-level skills like spelling, grammar, and arithmetic have been treated as prerequisites for advancing to higher-order thinking. The prevailing notion is that one must first master these basics before moving on to creativity, critical thinking, or original thought. However, this linear progression is more a product of tradition than necessity. AI now offers us the chance to reconsider this approach. Students should have the right to leapfrog over certain lower-level skills directly into higher-order cognitive functions, bypassing unnecessary barriers.

Predictably, this notion encounters resistance. Rooted in the Protestant work ethic is the belief that one must toil through the basics before earning the right to engage in more sophisticated intellectual activities. This ethic, which equates hard work on mundane tasks with moral worth, is deeply ingrained in our educational systems. However, in an age where AI can handle many of these lower-level tasks, this mindset seems increasingly obsolete. Insisting that all students must follow the same sequence of skills before advancing to higher-order thinking is not just misguided; it is a relic of a bygone era. If AI enables students to engage meaningfully with complex ideas and creative thinking from the start, we should embrace that opportunity rather than constrain it with outdated dogma.

The implications of this shift are significant. If we recognize the right to leapfrog over certain skills, we must also acknowledge that traditional educational hierarchies need to be re-examined. Skills like spelling and grammar, while valuable, should no longer be gatekeepers for students who excel in critical thinking and creativity but struggle with procedural details. AI offers a way to reimagine educational equity, allowing students to focus on their strengths rather than being held back by their weaknesses. Rather than forcing everyone to climb the same cognitive ladder, we can enable each student to leap to the level that aligns with their abilities, creating a more personalized and equitable educational experience.

This rethinking of educational equity challenges deeply rooted assumptions. The belief that hard work on the basics is necessary for higher-level achievement is pervasive, but it is not supported by evidence. In reality, cognitive development is driven more by engagement with complex ideas than by rote mastery of procedural skills. AI provides the tools to focus on these higher-order skills earlier in the education, without the traditional prerequisite of mastering lower-order tasks.

Moreover, the concept of “deskilling” is not new. Throughout history, humanity has continually adapted to technological advances, acquiring new skills while allowing others to fade into obscurity. Today, few people can track animals or make shoes from anymal skin—skills that were once essential for survival. Even the ability to harness a horse, once a common necessity, is now a rare skill. While some may lament these losses, they are also a reminder that as society evolves, so too must our educational priorities. Just as technological advancements have rendered certain skills obsolete, AI is reshaping the skills that are most relevant today.

As we move forward, educators must rethink how learning experiences are designed. Rather than viewing AI as merely a tool for accommodating deficits, we should see it as a means of expanding possibilities for all students. By enabling learners to bypass certain skills that are no longer essential in an AI-driven world, we can better align education with the demands of the 21st century. This is about acknowledging that the path to learning does not have to be the same for everyone. In a world where AI can democratize access to higher-level cognitive tasks, the right to leapfrog is not just a possibility—it is a necessity for equitable education. 


Friday, August 9, 2024

Authorship, Automation, and Answerability

In the ongoing debate about the ethical use of AI, two main concerns stand out—one superficial and one profound. The first concern, often highlighted, is about the authenticity of authorship, with fears that AI-generated content might mislead us about who the true author is. However, this worry is largely misguided. It stems from a historically limited, Western-centric notion of authorship that blurs the line between the origin of ideas and the craft of their representation.

Take the legacy of Steve Jobs. He wasn’t celebrated for personally assembling each iPhone, but for his vision and design that brought the device to life. In our industrial world, the act of making things is not inherently authorial—designing them is. Why should it be any different with text, code, or images? If I designed this text, and used advanced tools to produce it, why am I not still the author? The shock many feel towards AI’s ability to generate content is akin to the upheaval experienced by 19th-century bootmakers during the Industrial Revolution. Automation has simply extended its reach into the realms of writing, coding, and art. The craftsmanship is replaced by automation, but the core principle remains: take pride in the ideas, not in the mechanics of their production. There is no inherent authorship in the latter.

But here’s where Mikhail Bakhtin’s notion of answerability helps our understanding of the true ethical stakes. While responsibility is often about fulfilling obligations or being held accountable after the fact, answerability is about our ongoing, active engagement with the world and the people in it. It is not just about who gets credit for the content; it is about recognizing that every action, every word, and every piece of AI-generated content occurs within a web of relationships. We are answerable to others because our creations—whether authored by human hands or machine algorithms—affect them.

The real concern, then, lies in the issue of answerability. AI-generated content often appears polished, convincing, and ready for immediate consumption. This creates a dangerous temptation to release such content into the world without thorough scrutiny. Here is where the ethical stakes rise significantly. AI may produce work that looks and sounds credible, but this does not guarantee that it is unbiased, meaningful, or truthful. It maybe garbage polluting the infosphere at best, or an outward harmful fake at worst. The ease of content creation does not absolve us of the responsibility to ensure its quality and integrity, and more importantly, it doesn’t free us from the answerability we have to the world around us.

This is the message we need to instill in our students, professionals, and anyone working with AI: you are still accountable and answerable for what you produce, even if a machine does the heavy lifting. Releasing AI-generated content without critical evaluation is akin to conjuring a spell without understanding its consequences. Like a magician wielding powerful but unpredictable magic, or a novice driver behind the wheel of a truck instead of a bicycle, the stakes have been raised. The tools at our disposal are more potent than ever, and with that power comes a heightened level of answerability.

In essence, the ethical debate surrounding AI shuold not be about the authorship of the craft but shuold be about the integrity and impact of the output. The real challenge is ensuring that what we create with these advanced tools is not only innovative but also responsible and answerable. As we continue to integrate AI into more aspects of our lives, we must focus less on who—or what—authored the content and more on the ethical implications of releasing it into the world. This is where the true ethical discourse lies, and it is here that our attention should be firmly fixed.


Do AI bots deceive?

The paper, Frontier Models are Capable of In-Context Scheming , arrives at a time when fears about AI’s potential for deception are increasi...