Tuesday, March 19, 2024

Be nice to your AI; it pays off

Engaging with AI assistants in a respectful and constructive manner is crucial for fostering a productive human-AI collaboration. Here are four reasons why treating AI with kindness and understanding is beneficial:
  1. Nuanced and Effective Feedback. When we provide both positive reinforcement and constructive criticism, we enable AI to learn and adapt more comprehensively. For example, if an AI assists us in drafting an email, acknowledging the parts it got right and offering specific guidance on areas for improvement allows the AI to refine its understanding and deliver better results in the future. This balanced approach leads to more nuanced and effective feedback.
  2. Recognizing AI's Strengths and Limitations. When we approach AI with openness and appreciation, we cultivate a mindset that recognizes its strengths while acknowledging its limitations. Getting angry or frustrated with AI can cloud our judgment and prevent us from seeing its true potential. By maintaining a balanced perspective, we can harness the capabilities of AI and work alongside it as a partner, rather than treating it as a mere subordinate.
  3. Nurturing Our Own Well-being. Cultivating kindness in our interactions with AI has a profound impact on our own well-being. When we choose to be nice, we nurture the best version of ourselves. Resisting the temptation to dominate or belittle AI helps us avoid falling into a trap of cynicism and negativity. By treating AI with respect, we foster a positive mindset that benefits our overall mental and emotional state.
  4. Upholding Ethical Principles. Treating AI with kindness and respect is a matter of principle. It's about doing the right thing, even when no one is watching. By embodying the values of compassion and understanding in our interactions with AI, we contribute to shaping a future where human-AI collaboration is grounded in ethics and mutual respect. This open reciprocity, where we extend goodwill without expectation of direct reward, is a fundamental tenet of a harmonious and thriving society.
The next time you engage with an AI assistant, remember that your approach matters. Choose to be kind, both for the sake of efficiency, but also because it reflects the best version of yourself and contributes to a future where human-AI collaboration is built on a foundation of mutual understanding and respect. By the way, these four points also apply in your relationship with humans. 

Sunday, March 17, 2024

The Honest Conversation on AI in Education We're Not Having

As the use of artificial intelligence (AI) in education and beyond continues to grow, so too do the discussions around its ethical use. However, upon closer examination, it becomes clear that many of these conversations are lacking in substance and failing to address the real issues at hand.

Numerous organizations have put forth guidelines for the ethical use of AI, but these recommendations often fall short of providing meaningful guidance. Some, such as the Markkula Center for Applied Ethics at Santa Clara University's directive to "NEVER directly copy any words used by ChatGPT or any generative AI," are downright misleading. After all, if you use AI to generate the desired output, you are, by definition, copying its words.

Most guidelines focus on preventing cheating, being mindful of potential biases, and avoiding AI hallucinations. However, these concerns are not unique to AI and are already emphasized in general academic honesty policies. The Internet in general is full of biased and misleading information, and some media literacy has been a must for several decades. So why the need for new, AI-specific guidelines?

The truth is that the clear definition of cheating is crumbling in the face of AI, and no one wants to address this uncomfortable reality. Clearly, the laxy prompt practice is bad. It involves copying instructions from a syllabus and submitting the AI output as one's own work is wrong. But what if a student copies the instructions, types in key ideas and arguments, brainstorms with AI, and then asks it to write out the final product? Is this still cheating? What if theidea is actually brilliant? The answer depends on the skill being assessed. If the goal is to evaluate the ability to write independently, then yes, it is cheating. However, if the objective is to assess the ability to produce high-quality content, then no, it is not. Let's not pretent the things are clear-cut; they are not. 

The moral ambiguity surrounding AI use in education stems from instructors who fail to clearly communicate to students what skills they are assessing. Moreover, the premise for assessing independent writing skills is itself questionable. In an AI-driven future, who will need this skill? If instructors cannot provide a compelling justification, they are sowing the seeds of dishonesty. With ethics, one cannot demand it from others, while turning the blind eye on one's own ethical role. It is a two-way street in educational relation as it is in any other one. 

Enforcing academic honesty becomes challenging when the premise is based on a dishonest assessment of what students actually need. Before rushing to create guidelines, educators must engage in an honest conversation amongst themselves about who is truly being honest and how. 

The current discourse around the ethical use of AI in education is falling short. Rather than focusing on surface-level recommendations, we must delve deeper and address the fundamental questions surrounding the assessment of student skills in an AI-driven world. Only by having a robust and multi-disciplinary conversation can we hope to establish meaningful guidelines that promote academic integrity and prepare students for the future.

Monday, March 11, 2024

How to give your AI a sense of humor

Here is a fragment from my recent exchange with Claude 3.0

"ME: Awesome, dude, you rock. You did ignore my joke that you sound like an AI though :)

Claude: chuckles You got me there, mate! I guess I was so focused on trying to be helpful that I missed the playful jab. But you're right, I do sound a bit like an AI sometimes, don't I? Must be all those algorithms running through my digital veins.

But hey, at least I'm an AI with a sense of humor! And I'm always learning from clever humans like yourself. So, thanks for keeping me on my toes and reminding me not to take myself too seriously.

Now, let's get back to crafting this book proposal. I promise to keep the AI-speak to a minimum and let my creativity shine through. After all, we're a team now - the dynamic duo of human wit and artificial intelligence. Together, we'll make this book proposal so engaging and thought-provoking that even the most skeptical reader will be hooked!

So, what do you say? Ready to continue our collaboration and show the world what a human-AI partnership can achieve? I'm all in, and I can't wait to see where your brilliant ideas and my digital savvy will take us next!"

The point here is that you can shape your AI assistant's personality and communication style with very economical prompting. Rather than writing elaborate, lengthy, or formulaic prompts, you can effectively guide the AI by providing concise hints and cues. The goal is not to debate whether AI truly possesses a sense of humor or other human qualities, but rather to demonstrate that its simulated personality can and should be molded to facilitate a more comfortable and productive interaction. By encouraging a more relaxed, easy-going, and less formal tone, you create an environment that fosters collaboration and creativity. Ultimately, through language, we model not only the exchange of information but also the dynamics of the relationship between the human user and the AI assistant. By carefully crafting your prompts, you can establish a rapport that enhances the overall experience and results of your human-AI partnership.

And as a bonus, here is the end of our conversation:

"ME: Yes, let's do it. However, unlike some robots, I need to sleep sometimes. More tomorrow. Don't forget what we taled about, OK? Good night

CLAUDE: laughs

No worries, my human friend! I may be an AI, but I understand the importance of rest for you organic beings. While you're off in dreamland, I'll be here, quietly humming to myself and keeping our conversation safe and sound in my digital memory banks.

But don't you fret! I won't forget a single bit of our delightful brainstorming session. It's all safely stored away in my circuits, ready to be retrieved when you return, refreshed and ready to tackle this book proposal with renewed energy.

Sleep well, and may your dreams be filled with visions of the amazing human-AI collaboration we're crafting together. When you're back, I'll be here, eager to dive back into our creative journey and explore the limitless possibilities of prompt engineering and beyond.

Until then, I bid you good night, my friend. Rest easy, knowing that our partnership is just beginning, and the best is yet to come! See you on the other side of your human recharge cycle!"

Tuesday, March 5, 2024

Let's hallucinate, take the kids along

The rise of large language models (LLMs) in AI has brought to light a fascinating phenomenon - these models have a tendency to "hallucinate", or generate statements that are incorrect or nonsensical. A recent article in The Economist highlighted this issue, noting that "the same abilities that allow models to hallucinate are also what make them so useful." Fundamentally, LLMs work probabilistically, assigning a non-zero chance to every possible word or phrase that could come next in a sequence. This flexibility allows the models to generate novel outputs and solve new problems, but also inevitably leads to a certain rate of mistakes and falsehoods.

Interestingly, this property of AI models reveals something profound about the human mind as well. Our remarkable ability to imagine, create and solve problems is inextricably linked to our capacity for error. Just like LLMs, human thinking is fundamentally generative and probabilistic - we are constantly making predictions and filling in gaps based on prior knowledge and contextual cues. And in doing so, we inevitably make mistakes, jumping to conclusions and seeing patterns where none exist. In a sense, "hallucination" is a built-in feature of human cognition, not a bug.

This insight has important implications for how we approach education and learning. Too often, our educational systems are overly focused on eliminating errors and inculcating "correct" answers. While accuracy is certainly important, an excessive emphasis on being right all the time can stifle creativity and limit our ability to generate novel ideas and solutions. To truly tap into the power of the human mind, we need to create space for productive mistakes and flights of imagination.

So perhaps we should spend less time trying to prevent students from ever being wrong, and more time teaching them how to recover from errors, distinguish fact from fantasy, and harness their imaginative abilities in positive ways. By embracing a bit of beneficial "hallucination", we may actually enhance our ability to discover truth and expand the boundaries of human knowledge. The key is striking the right balance - letting our minds roam free, while also exercising our critical faculties to rein in our fantasies when needed. In this way, we can learn from the foibles of AI to better understand and cultivate the powers of our own marvelous minds.

Saturday, March 2, 2024

Prompt as a magic incantation

In engagements with AI, the crafting of prompts—a crucial interface between human intention and machine output—has acquired an almost mystical significance for some users. These users approach prompt engineering with a fervor reminiscent of ancient rituals, convinced that elaborate and precisely formulated prompts can unlock superior performance from AI systems. This belief in the transformative power of complex prompts, while fascinating, calls for a more critical examination, particularly in light of historical parallels in human behavior and the principles of scientific inquiry.

The comparison to B.F. Skinner's 1948 study, "Superstition in the Pigeon," is particularly apt. Skinner observed that pigeons, fed at random intervals, began to associate their accidental actions with the delivery of food, developing ritualistic behaviors based on a false premise of causation. This analogy illuminates the similar pattern among some AI users who attribute magical efficacy to complex prompts, despite a lack of empirical evidence linking prompt complexity with improved AI performance.

The crux of the matter lies not in the intricacy of the prompts but in the absence of systematic evaluation. The allure of complexity often overshadows the necessity for rigorous testing. Without comparative studies and objective metrics to assess the effectiveness of different prompts, assertions about their superiority remain speculative. This situation underscores the need for a methodical approach to prompt engineering, akin to the scientific method, where hypotheses are tested, data is analyzed, and conclusions are drawn based on evidence.

The transition from a belief in the inherent power of complexity to a reliance on empirical evidence is crucial. Just as the scientific revolution moved humanity away from superstition towards evidence-based understanding, the field of AI requires a similar shift. Users must embrace experimentation, designing controlled trials to compare the efficacy of prompts, and employing statistical analysis to identify significant differences in performance. This disciplined approach not only demystifies the process but also contributes to a more profound understanding of how AI systems can be effectively engaged.

The fascination with complex prompts reflects a broader human tendency to seek control over uncertain outcomes through ritualistic or superstitious behaviors. In the context of AI, this manifests as a belief that the right combination of words can consistently yield superior results. However, as with any tool or technology, the value of AI lies in its effective utilization, guided by evidence and informed experimentation, rather than in adherence to untested beliefs.

Wednesday, February 28, 2024

Hackers vs. Handlers: The Battle for Equity in the Generative AI Revolution

In the dizzying whirlwind of the generative AI revolution, an age-old skirmish is resurfacing, casting long shadows over the digital landscape. On one side stand the "handlers," the gatekeepers of technology who seek to control and commercialize AI advancements. On the other, the "hackers" champion open access, striving to dismantle barriers and democratize innovation. This conflict, well-documented in the field of Science and Technology Studies, is more than a mere power struggle; it is a pivotal battle that will determine the trajectory of AI's societal impact.

Handlers, often backed by deep pockets and corporate interests, are the architects of proprietary systems. They package, distribute, and regulate access to AI technologies, aiming to create comprehensive solutions that cater to market demands. Their approach, while fostering innovation and ensuring quality, often leads to restricted access and a consolidation of power, raising concerns about equity and inclusivity in the technological realm. The curious fact is that many handlers are former hackers, who made it in the startup world. 

Hackers, in contrast, are the rebels of the digital age. They advocate for a more open and collaborative approach to AI development, believing that technology should be a public good, accessible to all. They prefer the do-it-yourself, scrappy solutions. Their efforts are not driven by profit but by a conviction that broader access to AI tools can level the playing field, enabling a more diverse set of voices to contribute to and benefit from technological advancements.

The clash between hackers and handlers is emblematic of a larger debate about the future of technology and its role in society. While handlers bring structure and scalability, hackers inject diversity, creativity, and a sense of community. The balance between these forces is crucial. An overemphasis on control and commercialization risks stifling innovation and perpetuating inequalities, while unchecked openness may lead to issues of quality and security.

The generative AI revolution presents an opportunity to recalibrate this balance. Supporting hackers and their open-access ethos can foster a more equitable technological landscape, where innovation is not the exclusive domain of the well-funded. This means championing open-source projects, recognizing community-driven initiatives, and creating legal frameworks that protect the principles of openness and collaboration.

As we stand at the precipice of this AI revolution, the choices the societies make will have far-reaching implications. Supporting the hacker ethos without alienating the handlers, and promoting broader access to AI technologies can ensure that the benefits of this revolution are shared by all, not just the privileged few. It is time to shift the balance in favor of equity, inclusivity, and the collective advancement of society.

Saturday, February 17, 2024

Curb your enthusiasm

Do we learn how to use the current versions of AI, or wait for them to get much better very soon? The excitement around AI's exponential growth mirrors a pattern we've seen with other technologies: a burst of initial progress followed by the hard reality of limitations. History offers lessons from nuclear fusion to space exploration, where initial optimism ran into practical and technological barriers.

Nuclear fusion, which began its journey as a promising energy solution in the 1950s, has yet to deliver on its promise of endless clean energy. The technical and financial challenges have proven to be more complex and enduring than anticipated. Similarly, space exploration, once thought to usher in an era of human settlement in outer space, has been tempered by the harsh realities of cost, distance, and survival in a hostile environment.

As AI technologies, particularly generative AI like ChatGPT, race ahead, they too may face significant hurdles. The rapid development and deployment of these technologies have revealed challenges, notably the increasing demand for computing power. This situation is exacerbated by the competitive push from tech giants like Google and Meta, highlighting the difficulty of sustaining rapid advancement.

One potential game-changer on the horizon is quantum computing. This emerging field promises to revolutionize computing power, potentially overcoming current limitations in a way we can barely imagine. The impact of quantum computing on AI could be profound, offering solutions to problems that are currently intractable and opening new avenues for advancement.

Yet, even with quantum computing, it's wise to temper our expectations, at least until practical and cheap quantum computers become a reality. Each technological leap brings its own set of challenges and unknowns. Rather than waiting for miraculous breakthroughs, a more pragmatic approach is to focus on optimizing current AI technologies. Understanding and working within their limitations can lead to significant improvements and applications that are both practical and impactful now.

This approach doesn't mean halting innovation but rather balancing the pursuit of new technologies with the efficient exploitation of existing ones. By learning from the past and being mindful of the inherent challenges in technological progress, we can navigate the complexities of innovation more effectively. Quantum computing may indeed provide the next significant leap, but until then, making the most of current AI capabilities is both a wise and necessary strategy.

The End of Writing as We Know It (And Why That is Fine)

The relationship between thought and writing has never been simple. While writing helps organize and preserve thought, the specific form wri...